Abstract
Halophilic enzymes contain a large number of acidic amino acids and marginal large hydrophobic amino acids, which make them highly soluble even under strongly hydrophobic conditions. This characteristic of halophilic enzymes provides potential for their industrial application. However, halophilic enzymes easily degrade when used for industrial applications compared with enzymes from other extremophiles because of their instability in low-salt environments. We aimed to clarify the stabilization mechanism of halophilic enzymes. We previously attempted to express halophilic alkaline phosphatase from Halomonas (HaALP) in non-halophilic E. coli. However, the expressed HaALP showed little activity. Therefore, we overexpressed HaALP in Gram-positive non-halophilic Brevibacillus choshinensis in this study, which was successfully expressed and purified in its active form. HaALP was denatured in 6M urea, refolded using various salts and the non-ionic osmolyte trimethylamine N-oxide (TMAO), and assessed by native polyacrylamide gel electrophoresis. HaALP refolded in 3M NaCl or 3M TMAO containing Na+ ions. Hydrophobic interactions due to a high salt concentration or TMAO enhanced the formation of the folding intermediate (the monomer precursor), and only Na+ ions activated the dimer form. This insight into the stabilization mechanism of HaALP may lead to the development of industrial applications of halophilic enzymes under low-salt conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.