Abstract

Expression cloning in Xenopus laevis oocytes was used to isolate an organic anion transport protein from rat kidney. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for probenecid-sensitive transport of p-aminohippurate (PAH). A 2, 227-base pair cDNA clone containing a 1,656-base pair open reading frame coding for a peptide 551 amino acids long was isolated and named ROAT1. ROAT1-mediated transport of 50 mu M [3H]PAH was independent of imposed changes in membrane potential. Transport was significantly inhibited at 4 degrees C, or upon incubation with other organic anions, but not by the organic cation tetraethylammonium, by the multidrug resistance ATPase inhibitor cyclosporin A, or by urate. External glutarate and alpha-ketoglutarate (1 mM), both counterions for basolateral PAH exchange, also inhibited transport, suggesting that ROAT1 is functionally similar to the basolateral PAH carrier. Consistent with this conclusion, PAH uptake was trans-stimulated in oocytes preloaded with glutarate, whereas the dicarboxylate methylsuccinate, which is not accepted by the basolateral exchanger, did not trans-stimulate. Finally, ROAT1-mediated PAH transport was saturable, with an estimated Km of 70 mu M. Each of these properties is identical to those previously described for the basolateral alpha-ketoglutarate/PAH exchanger in isolated membrane vesicles or intact renal tubules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.