Abstract

Salinispirillum sp. LH 10-3-1 was newly isolated from the alkali lake water samples collected in Inner Mongolia. In this study, a gene coding for D-lactate dehydrogenase from the strain LH 10-3-1 (SaLDH) was cloned and characterized. The recombinant enzyme was a tetramer with a native molecular mass of 146.2 kDa. The optimal conditions for SaLDH to reduce pyruvate and oxidize D-lactic acid were pH 8.0 and pH 5.0, at 25 °C. Cu2+ and Ca2+ slightly promoted the oxidation and reduction activities of SaLDH, respectively. To improve the stability of SaLDH, the enzyme was immobilized on Cu3(PO4)2-based inorganic hybrid nanoflowers. The results showed that the reduction activity of the hybrid nanoflowers disappeared, and the optimum temperature, specific activity, thermostability, and storage stability of the immobilized SaLDH were significantly improved. In addition, the biotransformation of D-lactic acid to pyruvate catalyzed by SaLDH and the hybrid nanoflowers was investigated. The maximum conversion of D-lactic acid catalyzed by the immobilized SaLDH was 25.7% higher than by free enzymes, and the immobilized SaLDH could maintain 84% of its initial activity after six cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.