Abstract

Schistosoma japonicum, a human blood fluke, causes a parasitic disease affecting millions of people in Asia. Thioredoxin-glutathione system of S. japonicum plays a critical role in maintaining the redox balance in parasite, which is a potential target for development of novel antischistosomal agents. Here we cloned the gene of S. japonicum thioredoxin (SjTrx), expressed and purified the recombinant SjTrx in Escherichia coli. Functional assay shows that SjTrx catalyses the dithiothreitol (DTT) reduction of insulin disulphide bonds. The coupling assay of SjTrx with its endogenous reductase, thioredoxin glutathione reductase from S. japonicum (SjTGR), supports its biological function to maintain the redox homeostasis in the cell. Furthermore, the crystal structure of SjTrx in the oxidized state was determined at 2.0 Å resolution, revealing a typical architecture of thioredoxin fold. The structural information of SjTrx provides us important clues for understanding the maintenance function of redox homeostasis in S. japonicum and pathogenesis of this chronic disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call