Abstract

Objective:Smoking is the leading preventable cause of various diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Nicotine, one of the major toxic components of tobacco, contributes to the pathogenesis of different diseases.Methods:Given the controversy about nicotine toxicity, the present study was conducted to determine apoptotic effects of nicotine on the heart, kidney, lung and liver of male mice. Real-time PCR was performed to identify mRNA expression changes in apoptotic-related genes between nicotine treated and control mice.Result:In the heart and lung, nicotine caused significant decrease in P53, Bax and Caspase-3 mRNA expression levels compared to the control group. However, in the kidney and liver, the result was significant increase in Bax, Caspase-2, Caspase-3 and a significant decrease in P53 mRNA expression (p<0.01). DNA fragmentation assays indicated no fragmentation in the heart and lung, but in the kidney and liver of nicotine treated mice, isolated DNA was fragmented.Conclusion:Our study provided insight into the molecular mechanisms of nicotine anti-apoptotic effects on the heart and lung as well as pro-apoptotic effects on kidney and liver via a P53-independent pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.