Abstract
Development of the adrenal cortex is dependent upon the specific regulation of cellular proliferation and differentiation. Although both intra-adrenal transcription factors and extra-adrenal peptide hormones have been demonstrated as indispensable for this regulatory process, the resulting distribution of proliferating and steroidogenic cell populations in the developing adrenal cortex has not been defined. Thus, we assessed expression and colocalization of a differentiation marker (3-β-hydroxysteroid dehydrogenase, 3β-HSD) and a proliferation marker (5-bromo-2′-deoxyuridine (BrdU) incorporation) at the various time points (embryonic day (E) 9.5 until 2 weeks post partum) during mouse adrenal development. In addition, adrenocorticotropin-hormone (ACTH) receptor (melanocortin-2-receptor (MC2-R)) expression was examined by in situ hybridization (ISH) and co-localized with 3β-HSD. As demonstrated by immunohistochemistry (IHC) the number of BrdU positive cells within the adrenal cortex decreased during development, whereas the number of 3β-HSD positive cells increased. While BrdU incorporation was evident in a scattered pattern throughout the adrenal gland up to day E13.5, at later time points BrdU positive cells assembled in a discrete subcapsular compartment possibly representing the stem cell layer of the adult adrenal cortex. Interestingly, only a small percentage of proliferating cells expressed 3β-HSD, while the majority of 3β-HSD positive cells co-stained for MC2-R expression by means of ISH. As demonstrated by semiquantitative RT-PCR, MC2-R mRNA levels increased from E11.5 until birth, while the highest adrenal secretory protease (AsP) expression was detected at E13.5 with a decrease thereafter. Taken together, these findings are in accordance with the concept of distinct cell populations present during adrenocortical development with a highly proliferative phenotype or differentiated steroidogenic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.