Abstract
Abstract Objective Although great progress has been made in the diagnosis and treatment of ovarian cancer, this disease is still the leading cause of death due to female reproductive system tumors. It has been reported that the paired box 8 (PAX8) gene is involved in the occurrence and development of a variety of human tumors. However, few researchers have investigated this phenomenon in detail. Methods Here, the BioGPS database was used to analyze the expression of the PAX8 gene in normal tissues. The Oncomine database was used to search for PAX8 gene information, and the findings were analyzed via a meta-analysis with regard to the significance of this gene in ovarian cancer. The Kaplan-Meier Plotter database was used to analyze the prognosis of patients with ovarian cancer. The Cancer Cell Line Encyclopedia (CCLE) was used only for obtaining cell line analysis data regarding the PAX8 gene. Results The relevant results of the BioGPS database analysis showed that PAX8 is not expressed or under-expressed in normal ovarian tissues. Oncomine data showed 454 different results; there were 417 study samples in total, with 9 results showing a significant statistical difference in PAX8 expression, 5 of which were related to high expression of PAX8 and 4 of which were related to low PAX8 expression. Cell line analysis data of the PAX8 gene obtained from CCLE showed high expression in ovarian cancer, which is consistent with the high expression of PAX8 in ovarian cancer research found using the Oncomine database. The Kaplan-Meier Plotter database showed that the expression level of PAX8 had a significant effect on the overall survival time of patients (P = 0.042). Compared with the low expression group, the overall survival time of ovarian cancer patients in the high expression group of PAX8 was significantly low (P < 0.05). Conclusion Through an in-depth study of the gene information of ovarian cancer-related genes using the gene chip data in the Oncomine database, it was concluded that PAX8 is highly expressed in ovarian cancer tissues and directly correlates to the prognostic survival of ovarian cancer patients. These findings provide an important basis for the development of clinical gene-targeted cancer therapeutic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.