Abstract

Although the excitatory amino acid glutamate and its receptors play crucial roles in many functions of the central nervous system (CNS), their presence in the peripheral tissues has remained unclear. In the present study, we have identified kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and N-methyl-D-aspartate (NMDA) receptor subtype mRNAs in pancreatic islets, using reverse transcriptase polymerase chain reaction (RT-PCR). Intracellular calcium ([Ca2+]i) measurements and electrophysiological recordings indicate that kainate, AMPA, and NMDA all elicit increases of [Ca2+]i in single pancreatic beta-cells and depolarize them. In addition, kainate and AMPA stimulate insulin secretion from isolated pancreatic islets, whereas NMDA does not. Also, immunocytochemical study shows the presence of intense glutaminase immunoreactivity in pancreatic alpha-cells and intrapancreatic ganglia, a finding compatible with the possibility that glutamate is released from alpha-cells as well as from neurons. Because the inhibitory amino acid gamma-amino butyric acid (GABA) is present in beta-cells as well as in neurons and inhibits glucagon secretion from alpha-cells, the present study suggests that glutamate and GABA are coordinated in the regulation of hormone secretion in pancreatic islets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.