Abstract

Emulsified isoflurane (EISO) is an intravenous anesthetic. However, researchers have not clearly determined how emulsified isoflurane affects the central nervous system during the process of anesthesia. The aim of this study was to explore changes in the gamma-aminobutyric acid type A receptor subunit (GABAA), 61 kD isoform of striatal-enriched protein phosphatase (STEP61) signaling pathway, and epigenetic regulation in cortical neurons after treatment with emulsified isoflurane. After immunological identification, the isolated neurons were randomly divided into three groups: the blank group (Con), intralipid treatment group (FE), and emulsified isoflurane treatment group (EISO). Neuron viability was assayed using cell counting kit-8 (CCK-8). The expression levels of target nucleic acids, proteins, and corresponding ligands were detected. Using real-time polymerase chain reaction (PCR) to assess the promoter methylation of ion channel proteins in the cerebral cortex of rats anesthetized with EISO, we observed changes in promoter methylation of the genes encoding gamma-aminobutyric acid type A receptor α1 subunit (GABAAα1), N-methyl-d-aspartate receptor subunit 1 (NMDAR1), and mu opioid receptor 1 (OPRM1), accompanied by changes in the levels of their messenger ribonucleic acids (mRNAs) and proteins. The levels of ligands for these receptors were also altered. EISO altered the methylation rate of the promoter region of channel protein-coding genes involved in the GABAA/STEP61 signaling pathway in cerebral cortical neurons to regulate gene expression. The ligands for the receptors were also changed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call