Abstract

Stable toxin (ST) peptides are the causative agents for a severe form of watery diarrhea. These peptides bind to a membrane-associated form of guanylyl cyclase, guanylyl cyclase C. The result is an accumulation of cyclic guanosine monophosphate (cGMP) in the intestinal cell, regulating protein kinase activity and the phosphorylation of a number of proteins involved in ion transport across the intestine. Using the human T84 colonic cell line as a model system, we show that cGMP accumulation in these cells after ST application is regulated by the activity of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5). The presence of human PDE5 in this cell line was confirmed by Western blot analysis, using an antibody raised to the bovine enzyme, and by the observation that cGMP hydrolytic activity detected in T84 cell lysates was almost completely inhibited by low concentrations of zaprinast, a specific inhibitor of PDE5. An increase in activity of PDE5 was observed in T84 cell lysates on exposure to the ST peptide and prolonged exposure of T84 cells to the ST peptide led to the induction of cellular refractoriness in these cells, which was largely contributed in terms of an increased rate of degradation of cGMP in desensitized cells as a result of PDE5 activation. This activation was correlated with an increase in the affinity of the enzyme for the substrate cGMP, as well as an increased affinity for zaprinast. We provide evidence for the first time that cGMP levels in the human colonocyte are regulated by the cGMP-hydrolytic activity of PDE5 and suggest that the expression and regulation of PDE5 in the intestine could therefore be important in controlling cGMP-mediated signaling in this tissue. J. Cell. Biochem. 77:159–167, 2000. © 2000 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.