Abstract

Inhibin, a gonadal peptide, selectively suppresses FSH release from the pituitary. The cDNAs coding for ovarian inhibin have been isolated and characterized. However, little is known about testicular inhibin. In this study we have isolated inhibin alpha-subunit cDNA from human testicular cDNA libraries and determined inhibin alpha-subunit mRNA levels in testes. The longest cDNA isolated from human testis was 1380 nucleotides long and contained a nucleotide sequence identical to that of human placental inhibin alpha-subunit and isolated human inhibin alpha-subunit gene, but different from human ovarian inhibin alpha-subunit in two amino acids in the signal peptide. A single 1.5-kilobase species of inhibin alpha-subunit mRNA was identified in the testes of several species. This mRNA was the same size as those in human ovary and placenta. The regulation of inhibin alpha-subunit mRNA in rat testis was next examined. The concentration of testicular inhibin alpha-subunit mRNA peaked between 20-25 days of age and gradually declined thereafter. Hypophysectomy decreased testicular inhibin alpha-subunit mRNA levels. Supplementation of hypophysectomized animals with FSH restored inhibin alpha-subunit mRNA levels to those in intact controls. By contrast, treatment with testosterone had no effect. Similarly, in Sertoli cell-enriched cultures, FSH, but not testosterone, increased inhibin alpha-subunit mRNA levels. We conclude that 1) human testicular inhibin alpha-subunit mRNA is similar to that of human ovary and placenta; and 2) inhibin alpha-subunit mRNA in Sertoli cells is regulated by FSH, but not testosterone, both in vivo and in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call