7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.ygcen.2016.10.013
Copy DOIPublication Date: Nov 1, 2016 | |
Citations: 5 |
Prolactin-like protein (PRL-L; LOC417800) is a homolog of PRL in non-mammalian vertebrates and can act as a functional ligand of PRL receptor (PRLR). Despite its widespread expression in extrapituitary tissues, mechanisms of regulation of PRL-L in the chicken ovary remain unknown. In this study, we first examined PRL-L expression in chicken ovarian developing follicles. PRL-L transcript levels were highest (P<0.05) in follicular walls of <2mm follicles and progressively declined during follicle maturation. Undifferentiated granulosa cells of 6–8mm follicles had higher (P<0.05) PRL-L mRNA levels than differentiated granulosa cells of F3, F2 or F1 follicles. In cultured undifferentiated granulosa cells, levels of PRL-L transcript were increased (P<0.05) by follicle stimulating hormone (FSH) treatment while were not altered by the addition of luteinizing hormone (LH). In addition, 10ng/ml non-glycosylated (NG-) and 1ng/ml glycosylated (G-) PRL increased (P<0.05) but at higher levels (100 or 1000ng/ml) both showed no effects on PRL-L expression. Furthermore, 100ng/ml NG-PRL enhanced (P<0.05) FSH-induced PRL-L expression, whereas the effects of G-PRL were not significant. These results suggest that PRL-L mRNA is differentially expressed in the follicular hierarchy and its high abundance in undifferentiated granulosa cells is under the regulation of FSH or PRL variants independently or in combination. Moreover, in undifferentiated granulosa cells we also provide evidence for a positive role for PKA, PKC and PI3K signaling while a negative role for ERK2 in mediating FSH stimulation of PRL-L transcription.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.