Abstract

Although high levels of staphylococcal phenol-soluble modulins (PSMs) in clinical methicillin-resistant Staphylococcus aureus (MRSA) has been shown to correlate with bacterial virulence, the PSMs expression in foodborne Staphylococcus aureus (S. aureus), as well as its association with staphylococcal food poisoning (SFP) was not yet clear. We collected a panel of 350 foodborne and 127 clinic-derived S. aureus strains and compared their PSMs expression. Overall, foodborne strains exhibited higher PSMs than clinical isolates, indicating a potential pathological significance of PSMs in staphylococcal food contamination. Furthermore, PSMs expression and staphylococcal enterotoxins (SEs) levels in relation to antibiotic sensitive and resistant strains were analysed. While the co-expression of PSMs and SEs was confirmed, one typical foodborne strain simultaneously yielding PSMs, SEB and SED was selected. By comparing this wildtype strain to a series of gene-deficient mutants, we concluded that PSMs and SEs expressions both relied on staphylococcal accessory regulator A initiation in the early stage of accessory gene regulator control, yet their succedent regulations differentiated to RNAIII-dependent and independent, respectively. These data provided preliminary insight into PSMs and SEs expression in foodborne S. aureus, and may guide the further studies on PSMs effects in SFP.

Highlights

  • Staphylococcus aureus (S. aureus) is a common cause of clinical infection, and one of the leading foodborne pathogen worldwide (Kadariya et al 2014)

  • Among the typical strains separated from clinic, phenol-soluble modulins (PSMs) production is more abundant in CA-Methicillin-resistant S. aureus (MRSA) than in Hospital-associated MRSA (HA-MRSA), and extremely high in high-virulence strains such as USA300 and

  • PSMs expression in foodborne S. aureus A high resolution HPLC-ESI-QTOF approach was established to assay PSMs expressed by S. aureus strains

Read more

Summary

Introduction

Staphylococcus aureus (S. aureus) is a common cause of clinical infection, and one of the leading foodborne pathogen worldwide (Kadariya et al 2014). Persistent antibiotic exposure has produced various resistant strains, among which Methicillin-resistant S. aureus (MRSA) is among the most notorious. The morbid S. aureus strains, multidrug-resistant variants in particular, As a recently discovered staphylococcal cytolysin family, phenol-soluble modulins (PSMs) are a group of small amphipathic peptides with α-helical structure. In S. aureus, at least 7 PSMs have been discovered: PSMα1 to PSMα4, PSMβ1 and PSMβ2, and the S. aureus δ-toxin (Chatterjee and Otto 2013; Otto 2014; Peschel and Otto 2013; Wang et al 2007). Psm genes, which are located on the core genome, generate the shorter (20–25 amino acids) α-type and the longer (44 amino acids) β-type peptides through post-translational cleavage (Wang et al 2007). Among the typical strains separated from clinic, PSMs production is more abundant in CA-MRSA than in Hospital-associated MRSA (HA-MRSA), and extremely high in high-virulence strains such as USA300 and

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.