Abstract

BackgroundShigella is one of the major causes of dysenteric diarrhea, which is known shigelosis. Shigelosis causes 160,000 deaths annually of diarrheal disease in the global scale especially children less than 5 years old. No licensed vaccine is available against shigelosis, therefore, efforts for develop an effective and safe vaccine against Shigella as before needed. The reverse vaccinology (RV) is a novel strategy that evaluate genome or proteome of the organism to find a new promising vaccine candidate. In this study, immunogenicity of a designed-recombinant antigen is evaluated through the in silico studies and animal experiments to predict a new immunogenic candidate against Shigella. MethodsIn the first step, proteome of Shigella flexneri was obtained from UniProtKB and then the outer membrane and extracellular proteins were predicted. In this study TolC as an outer membrane protein was selected and confirmed among candidates. In next steps, pre-selected protein was evaluated for transmembrane domains, homology, conservation, antigenicity, solubility, and B- and T-cell prediction by different online servers. ResultTolC as a conserved outer membrane protein, using different immune-informatics tools had acceptable scores and was selected as the immunogenic antigen for animal experiment studies. Recombinant TolC protein after expression and purification, was administered to BALB/c mice over three intraperitoneal routes. The sera of mice was used to evaluate the IgG1 production assay by indirect-ELISA. The immunized mice depicted effective protection against 2LD50 of Shigella. Flexneri ATCC12022 (challenge study). ConclusionTherefore, the reverse vaccinology approach and experimental test results demonstrated that TolC as a novel effective and immunogenic antigen is capable for protection against shigellosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call