Abstract

The 50-amino acid protein medin is the main fibrillar component of human aortic medial amyloid (AMA), the most common form of localised amyloid which affects 97% of Caucasians over the age of 50. Structural models for several amyloid assemblies, including the Alzheimer’s amyloid-β peptides, have been defined from solid-state nuclear magnetic resonance (SSNMR) measurements on 13C- and 15N-labelled protein fibrils. SSNMR-derived structural information on fibrillar medin is scant, however, because studies to date have been restricted to limited measurements on site-specifically labelled protein prepared by solid-phase synthesis. Here we report a procedure for the expression of a SUMO-medin fusion protein in Escherichia coli and IMAC purification yielding pure, uniformly 13C,15N-labelled medin in quantities required for SSNMR analysis. Thioflavin T fluorescence and dynamic light scattering measurements and transmission electron microscopy analysis confirm that recombinant medin assembles into amyloid-like fibrils over a 48-h period. The first 13C and 15N SSNMR spectra obtained for uniformly-labelled fibrils indicate that medin adopts a predominantly β-sheet conformation with some unstructured elements, and provide the basis for further, more detailed structural investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call