Abstract

Single molecule (SM) microscopy is used in the study of dynamic molecular interactions of fluorophore labeled biomolecules in real time. However, fluorophores are prone to loss of signal via photobleaching by dissolved oxygen (O2). To prevent photobleaching and extend the fluorophore lifetime, oxygen scavenging systems (OSS) are employed to reduce O2. Commercially available OSS may be contaminated by nucleases that damage or degrade nucleic acids, confounding interpretation of experimental results. Here we detail a protocol for the expression and purification of highly active Pseudomonas putida protocatechuate-3,4-dioxygenase (PCD) with no detectable nuclease contamination. PCD can efficiently remove reactive O2 species by conversion of the substrate protocatechuic acid (PCA) to 3-carboxy-cis,cis-muconic acid. This method can be used in any aqueous system where O2 plays a detrimental role in data acquisition. This method is effective in producing highly active, nuclease free PCD in comparison with commercially available PCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call