Abstract

The development of recombinant techniques for rapid cloning, expression, and characterization of cDNAs encoding antibody (Ab) subunits has revolutionized the field of antibody engineering. By fusion to heterologous protein domains, chain shuffling, or inclusion of self-assembly motifs, novel molecules such as bispecific Abs can be generated that possess the subset of functional properties designed to fit the intended application. We describe the engineering of Ab fragments produced in bacteria for blocking the CD28-CD80/CD86 costimulatory interaction in order to induce tolerance against transplanted organs. We designed single-chain Fv antibodies, monospecific and bispecific diabodies, and a bispecific tetravalent antibody (BiTAb) molecule directed against the CD80 and/or CD86 costimulatory molecules. These recombinant Ab molecules were expressed in Escherichia coli, followed by purification and evaluation for specific interaction with their respective antigen in an enzyme-linked immunosorbent assay (ELISA). A specific sandwich ELISA confirmed the bispecificity of the bispecific diabodies and the BiTAb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.