Abstract

The present study aimed to produce and pathophysiologically evaluate the metallothionein (MT) fusion protein. A recombinant plasmid containing DNA segment coding the pET-glutathione transferase (GST)-small ubiquitin-related modifier (SUMO)-MT fusion protein was inserted into Escherichia coli for expression. The expression level of the fusion protein was very high, reaching to 38.4% of the total supernatant proteins from the organism. Subsequent filtration through glutathione Sepharose 4B gel and Sephadex G-25 yielded an MT fusion protein with purity more than 95%. When exposed to metals, E. coli containing the GST-SUMO-MT fusion protein showed an increased accumulation of Cd(2+), Zn(2+), or Cu(2+) at approximately 4.2, 4.0, or 1.6 times higher, respectively, than those containing the control protein. Administration of GST-SUMO-MT to mice that were also treated with D-galactose to induce neuronal and hepatic damage showed a significant improvement of animal learning and memory capacity, which was depressed in mice treated by D-galactose alone. Administration of MT fusion protein also prevented D-galactose-increased malondialdehyde contents and histopathological changes in the brain and liver. Furthermore, supplement of the fusion protein significantly prevented D-galactose-increased nitric oxide contents and -decreased superoxide dismutase activity in the brain, liver, and serum. The fusion protein was also able to prevent ionizing radiation-induced DNA damage of the mouse thymus. The present study indicates that GST-SUMO-MT has a normal metal binding feature and also significantly protects the multiple tissues against oxidative damage in vivo caused by chronic exposure to D-galactose and by ionizing radiation. Therefore, GST-SUMO-MT may be a potential candidate to be developed for the clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.