Abstract

BmrI (ACTGGG N5/N4) is one of the few metal-independent restriction endonucleases (REases) found in bacteria. The BmrI restriction-modification system was cloned by the methylase selection method, inverse PCR, and PCR. BmrI REase shows significant amino acid sequence identity to BfiI and a putative endonuclease MspBNCORF3798 from the sequenced Mesorhizobium sp. BNC1 genome. The EDTA-resistant BmrI REase was successfully over-expressed in a pre-modified E. coli strain from pET21a or pBAC-expIQ vectors. The recombinant BmrI REase shows strong promiscuous activity (star activity) in NEB buffers 1, 4, and an EDTA buffer. Star activity was diminished in buffers with 100–150 mM NaCl and 10 mM MgCl 2. His-tagged BmrI192, the N-terminal cleavage domain of BmrI, was expressed in E. coli and purified from inclusion bodies. The refolded BmrI192 protein possesses non-specific endonuclease activity. BmrI192 variants with a single Ser to Cys substitution (S76C or S90C) and BmrI200 (T200C) with a single Cys at the C-terminal end were also constructed and purified. BmrI200 digests both single-strand (ss) and double-strand (ds) DNA and the nuclease activity on ss DNA is at least 5-fold higher than that on ds DNA. The Cys-containing BmrI192 and BmrI200 nuclease variants may be useful for coupling to other DNA binding elements such as synthetic zinc fingers, thio-containing locked nucleic acids (LNA) or peptide nucleic acids (PNA).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call