Abstract

Ovine uterine serpin (OvUS) is produced in the uterus of sheep under the influence of progesterone. It weakly inhibits pepsin and reduces proliferation of lymphocytes, tumor cell lines, and preimplantation embryos. When purified from uterine fluid, the concentration required for its antiproliferative effect in vitro is approximately 0.25-1 mg/ml. Here we show that recombinant (r) OvUS is a more potent regulator of cell proliferation than native (n) OvUS purified from uterine fluid. To produce rOvUS, RNA was extracted from endometrium from a pregnant ewe and cDNA was amplified by reverse transcription-polymerase chain reaction using gene-specific primers. The purified OvUS cDNA was inserted into the ampicillin-resistant plasmid vector pcDNA3.1/ V5-His-TOPO. The plasmid was introduced into the TOP10 Escherichia coli strain, purified, and used for transfection of Freestyle 293-F cells. Digestion of rOvUS with protein N-glycosidase F confirmed that rOvUS was N-glycosylated. Both rOvUS and nOvUS inhibited proliferation of phytohemagglutin-activated sheep lymphocytes and the P388D1 mouse lymphoma and PC-3 prostate cell lines. Inhibition was greater for rOvUS than for nOvUS, and concentrations as low as 15 microg/ml rOvUS were effective at reducing lymphocyte proliferation. Addition of rOvUS to fertilized bovine embryos reduced the cleavage rate and the percentage of embryos that became blastocysts. Native OvUS did not affect cleavage rate and had a smaller effect on development to the blastocyst stage. Experiments demonstrate that OvUS is a more potent inhibitor of cell proliferation and embryonic development than previously believed and add credence to the putative role for the protein in regulating cell proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call