Abstract

Targeted gene silencing using small regulatory RNAs is a widely used technique for genetic studies in plants. Artificial microRNAs are one common approach; they have the advantage of producing just a single functional small RNA which can be designed for high target specificity and low off-target effects. Simultaneous silencing of multiple targets with artificial microRNAs can be achieved by producing polycistronic microRNA precursors. Alternatively, specialized trans-acting short interfering RNA (tasiRNA) precursors can be designed to produce several specific tasiRNAs at once. Here we tested several artificial microRNA- and tasiRNA-based methods for multiplexed gene silencing in Solanum lycopersicum (tomato) and Nicotiana benthamiana. All analyses used transiently expressed expressed transgenes delivered by infiltration of leaves with Agrobacterium tumefacians. Small RNA sequencing analyses revealed that many previously described approaches resulted in poor small RNA processing. The 5'-most microRNA precursor hairpins on polycistronic artificial microRNA precursors were generally processed more accurately than precursors at the 3' end. Polycistronic artificial microRNAs where the hairpin precursors were separated by transfer RNAs had the best processing precision. Strikingly, artificial tasiRNA precursors failed to be processed in the expected phased manner in our system. These results highlight the need for further development of multiplexed artificial microRNA and tasiRNA strategies. The importance of small RNA sequencing, as opposed to single-target assays such as RNA blots or real-time PCR, is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call