Abstract

A recombinant plasmid containing the rat prodynorphin cDNA was introduced into the mouse anterior pituitary corticotroph cell line AtT-20. These cells normally express and posttranslationally process proopiomelanocortin, but not prodynorphin. Stable transformants were isolated and analyzed for the expression and processing of prodynorphin. The stably transformed AtT-20 cells that expressed a 1.3-kilobase prodynorphin mRNA also expressed prodynorphin protein and processed it to dynorphin peptides. The peptides included leucine-enkephalin, beta-neoendorphin, dynorphin-A8, and dynorphin-B, as identified by gel filtration and reverse phase HPLC followed by RIA using peptide-specific antisera. These results demonstrate that AtT-20 cells efficiently and accurately process prodynorphin at both dibasic sites and monobasic cleavage sites, indicating that the AtT-20 cells contain enzymes capable of cleaving the precursor not only at dibasic residues but also at monobasic residues. The release of prodynorphin-derived peptides paralleled secretion of endogenous proopiomelanocortin-derived peptides when stimulated by CRF, a natural secretagogue for ACTH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call