Abstract
The β(1,3)-glucanosyltransferases of the GH72 family are redundant enzymes that are essential for the formation and dynamic remodeling of the fungal wall during different stages of the life cycle. Four putative genes encoding glycosylphosphatidylinositol (GPI)-anchored β(1,3)-glucanosyltransferases, designated TmelGEL1, TmelGEL2, TmelGEL4 and TmelGAS4, have been annotated in the genome of Tuber melanosporum, an ectomycorrhizal fungus that also produces a hypogeous fruiting body (FB) of great commercial value (black truffle). This work focuses on the characterization and expression of this multigene family by taking advantage of a laser microdissection (LMD) technology that has been used to separate two distinct compartments in the FB, the hyphae and the asci containing the ascospores. Of the four genes, TmelGEL1 was the most up-regulated in the FB compared to the free-living mycelium. Inside the FB, the expression of TmelGEL1 was restricted to the hyphal compartment. A phylogenetic analysis of the Gel/Gas protein family of T. melanosporum was also carried out. A total of 237 GH72 proteins from 51 Ascomycotina and 3 Basidiomycota (outgroup) species were analyzed. The resulting tree provides insight into the evolution of the T. melanosporum proteins and identifies new GH72 paralogs/subfamilies. Moreover, it represents a starting point to formulate new hypotheses on the significance of the striking GH72 gene redundancy in fungal biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.