Abstract
The 3C-like proteinase (Pro) from Tomato ringspot virus (genus Nepovirus) is responsible for the processing of the RNA1-encoded (P1) and RNA2-encoded (P2) polyproteins. Cleavage between the VPg and Pro domains is inefficient in vitro and in E. coli, resulting in the accumulation of the VPg-Pro. In this study, we have compared the trans-activity of the Pro and VPg-Pro on various P1- and P2-derived precursors. Recombinant Pro and VPg-Pro were partially purified using an E. coli expression system. A mutation of the VPg-Pro cleavage site was introduced into the VPg-Pro to prevent slow release of the Pro. The Pro was five to ten times more active than the VPg-Pro on two P2 cleavage sites (at the N- and C-termini of the movement protein domain) and was approximately two times more active than the VPg-Pro on the third P2 cleavage site (between the X3 and X4 domains). Neither the Pro nor the VPg-Pro could cleave in trans P1-derived substrates containing the three cleavage sites delineating the X1, X2, putative NTP-binding protein and VPg domains. These results are discussed in light of the possible regulation of the proteinase activity during virus replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.