Abstract

Rab3 proteins (isoforms A, B, C and D) are low molecular weight GTP-binding proteins proposed to be involved in regulated exocytosis. In the present study, Rab3 protein expression and localization was examined in rat parotid gland by reverse transcription (rt) PCR, Western blotting and immunocytochemistry. An ∼200 bp PCR product was obtained from parotid RNA by rtPCR and this fragment was cloned and sequenced. Nucleotide and deduced amino acid sequences obtained from five clones were identical to rab3D. Membrane and cytosolic fractions prepared from parotid acini were immunoblotted with antisera specific for each of the four Rab3 isoforms. A 28 kDa protein was detected with Rab3D-specific antisera in both fractions with staining being more intense in the membrane fraction. No other Rab3 isoforms were detected by immunoblotting, a result consistent with those obtained by rtPCR. Rab3D was enriched in zymogen granule membranes and Triton X-114 extraction revealed that this isoform is predominantly lipid-modified in parotid. Localization of Rab3D was done on frozen sections of parotid gland by immunofluorescence microscopy. Staining was observed primarily in the acinar cells and was adjacent to the acinar lumen. Incubation of dispersed acini with isoproterenol and substance P stimulated amylase secretion 4- and 2-fold above basal, respectively. Isoproterenol, but not substance P, induced redistribution of Rab3D from the cytosol to the membrane fraction in dispersed parotid acini. Consistent with these findings, isoproterenol injections into fasted rats also resulted in increased membrane-associated Rab3D in the parotid acini. These results indicate that Rab3D is: (1) the major Rab3 isoform expressed in rat parotid gland; (2) localized to zymogen granule membranes; and (3) involved with regulated enzyme secretion in acinar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.