Abstract

CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP‐activated chloride channel that regulates electrolyte and water transport. The present study investigated the expression and localization of CFTR in human gingiva and explored the possible association of CFTR with periodontal conditions. CFTR expression in gingival biopsies from five periodontally healthy subjects and ten subjects with chronic periodontitis and in the RHGE (reconstituted human gingival epithelia) was detected by immunohistochemistry, whereas its expression in gingival biopsies was analysed by immunofluorescence staining. CFTR mRNA was analysed by reverse transcription‐PCR. CFTR mRNA was detected in human gingival epithelia and RHGE. CFTR protein was detected in gingival biopsies from both healthy subjects and individuals with periodontitis and in RHGE. In healthy subjects, CFTR expression was mainly confined to the granular and spinous layers of epithelia and localized on the cell membrane. In patients with periodontitis, CFTR was detected in all layers of epithelia and the underlying connective tissues. The mean CFTR expression levels in periodontitis patients were significantly higher than those in healthy subjects. The present study for the first time showed the expression and localization of CFTR in human gingival epithelia. Elevated CFTR expression in periodontitis subjects implies the possible involvement of CFTR in periodontal disease pathogenesis. Further study is warranted to confirm the present findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.