Abstract

Apelin is an adipose tissue-derived hormone with many physiological functions, including the regulation of female reproduction. It acts through an orphan G protein-coupled receptor APJ/APLNR. The present study aimed to investigate the expression of apelin and its receptor APJ in the ovarian follicles and corpus luteum (CL) and the role of apelin on steroidogenesis and cell survival. Ovarian follicles were classified into four groups based on size and estradiol (E2) level in the follicular fluid as follows: (i) F1 (4–6 mm; <0.5 ng/mL) (ii) F2 (7–9 mm; 0.5–5 ng/mL) (iii) F3 (10–13 mm; 5–40 ng/mL) and (iv) F4 (dominant/pre-ovulatory follicle) (>13 mm; >180 ng/mL). The corpora lutea (CL) were categorized into early (CL1), mid (CL2), late luteal (CL3), and regressing (CL4) CL stages. Expression of apelin increased with follicle size, with significantly greatest in the dominant or pre-ovulatory follicle (P < 0.05). Expression of APJ was greater in large and dominant follicles than in small and medium follicles (P < 0.05). In CL, the mRNA and protein abundance of apelin and apelin receptor was greater during mid (CL2) and late luteal (CL3) stages as compared to early (CL1) and regressing (CL4) stages (P < 0.05). Both the factors were localized in granulosa and theca cells of follicles and small and large luteal cells of CL. The pattern of the intensity of immunofluorescence was similar to mRNA and protein expression. Granulosa cells were cultured in vitro and treated at 1, 10, and 10 ng/mL apelin-13 either alone or in the presence of the follicle-stimulating hormone (FSH) (30 ng/mL) or insulin-like growth factor-I (IGF-I) (10 ng/mL) for 48 h. The luteal cells were treated with apelin-13 at 1, 10, and 100 ng/mL doses for 48 h. Apelin treatment at 10 and 100 ng/ml significantly (P < 0.05) increased E2 secretion, cytochrome P450 aromatase or CYP19A1 expression in GC. In luteal cells, apelin at 10 ng/mL and 100 ng/mL significantly (P < 0.05) increased progesterone (P4) secretion and HSD3B1 expression. In GCs, apelin, either alone or in combination, increased PCNA expression and inhibited CASPASE3 expression suggesting its role in cell survival. In conclusion, this study provides novel evidence for the presence of apelin and receptor APJ in ovarian follicles and corpora lutea and the stimulatory effect on E2 and P4 production and promotes GC survival in buffalo, suggesting the role of apelin in follicular and luteal functions in buffalo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call