Abstract

PYCRs are proline biosynthetic enzymes that catalyze the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline in humans. PYCRs - especially PYCR1 - are upregulated in many types of cancers and have been implicated in the altered metabolism of cancer cells. Of the three isoforms of PYCR, PYCR3 remains the least studied due in part to the lack of a robust recombinant expression. Herein, we describe a procedure for the expression of soluble SUMO-PYCR3 in Escherichia coli, purification of the fusion protein, and removal of the SUMO tag. PYCR3 is active with either NADPH or NADH as the coenzyme. Bi-substrate kinetic measurements obtained by varying the concentrations of both L-P5C and NADH, along with product inhibition data for l-proline, suggest a random ordered bi bi mechanism. A panel of 19 proline analogs was screened for inhibition, and the kinetics of competitive inhibition (with L-P5C) were measured for five of the compounds screened, including N-formyl-l-proline, a validated inhibitor of PYCR1. N-formyl-l-proline was found to be ten times more selective for PYCR1 over PYCR3. The SUMO-PYCR3 expression system should be useful for testing the isoform specificity of PYCR1 inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call