Abstract
The oviduct plays a crucial role in the transport and maturation of gametes and ensures suitable conditions for fertility and early embryo development. One regulator of oviduct function is progesterone (P4), which affects the cell by interacting with nuclear progesterone receptors (PGRs) and through nongenomic mechanisms, presumably involving membrane PGRs. The aim of this study was to evaluate the expression of messenger RNAS (mRNAs) and proteins for progesterone receptor membrane component (PGRMC) 1 and 2 and membrane progestin receptors (mPR) α, β, and γ and to use immunohistochemistry to demonstrate their cell-specific localization in the bovine oviduct. Oviducts ipsilateral and contralateral to the corpus luteum or to the dominant follicle were collected from cows on days 6 to 12 (midluteal stage) and 18 to 20 (follicular stage) of the estrous cycle and divided into 3 parts (infundibulum, ampulla, and isthmus). There were no differences (P > 0.05) in the PGRMC1, PGRMC2, mPRα, β, and γ mRNA expression between ipsi- and contralateral oviducts. However, the same parts of the oviduct collected during the different stages of the estrous cycle showed higher (P < 0.05) mRNA levels of PGRMC1, PGRMC2, and mPRα on days 18 to 20 than on days 6 to 12 of the estrous cycle. mPRα and mPRβ mRNA levels were higher (P < 0.05) in the infundibulum than in the isthmus, whereas PGRMC1 expression was higher (P < 0.05) in the infundibulum than in ampulla. Immunohistochemistry was used to detect PGRMC1, PGRMC2, PRα, β, and γ proteins in all parts of both oviducts from days 6 to 12 and 18 to 20 of the estrous cycle. There were no differences in the staining intensity and cellular localization of the studied proteins between the ipsi- and contralateral oviducts and between the studied stages of the estrous cycle. A strong positive reaction was observed in luminal cells, but this reaction was less evident in myocytes and stromal cells. All proteins were also localized to the endothelial cells of blood vessels. These results suggest that membrane progesterone receptors, may be involved in the regulation of oviduct motility, secretory function, and blood flow in this organ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.