Abstract

Osmotin, a pathogenesis-related antifungal protein, is relevant in induced plant immunity and belongs to the thaumatin-like group of proteins (TLPs). This article describes comparative structural and functional analysis of the two osmotin isoforms cloned from Phytophthora-resistant wild Piper colubrinum. The two isoforms differ mainly by an internal deletion of 50 amino acid residues which separates them into two size categories (16.4 kDa-PcOSM1 and 21.5 kDa-PcOSM2) with pI values 5.6 and 8.3, respectively. Recombinant proteins were expressed in E. coli and antifungal activity assays of the purified proteins demonstrated significant inhibitory activity of the larger osmotin isoform (PcOSM2) on Phytophthora capsici and Fusarium oxysporum, and a markedly reduced antifungal potential of the smaller isoform (PcOSM1). Homology modelling of the proteins indicated structural alterations in their three-dimensional architecture. Tertiary structure of PcOSM2 conformed to the known structure of osmotin, with domain I comprising of 12 β-sheets, an α-helical domain II and a domain III composed of 2 β-sheets. PcOSM1 (smaller isoform) exhibited a distorted, indistinguishable domain III and loss of 4 β-sheets in domain I. Interestingly, an interdomain acidic cleft between domains I and II, containing an optimally placed endoglucanase catalytic pair composed of Glu-Asp residues, which is characteristic of antifungal PR5 proteins, was present in both isoforms. It is well accepted that the presence of an acidic cleft correlates with antifungal activity due to the presence of endoglucanase catalytic property, and hence the present observation of significantly reduced antifungal capacity of PcOSM1 despite the presence of a strong acidic cleft, is suggestive of the possible roles played by other structural features like domain I or/and III, in deciding the antifungal potential of osmotin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.