Abstract

Antigen presenting cells (APCs), especially dendritic cells (DCs), play a crucial role in immune responses against infections by sensing microbial invasion through Toll-like receptors (TLRs). In this regard, TLR ligands are attractive candidates for use in humans and animal models as vaccine adjuvants. So far, no studies have been performed on TLR expression in non-human primates such as rhesus macaques. Therefore, we studied the TLR expression patterns in different subsets of APC in rhesus macaques and compared them to similar APC subsets in human. Also, expression was compared with corresponding DC subsets from different organs from mice. Here we show by semi-quantitative RT-PCR, that blood DC subsets of rhesus macaque expressed the same sets of TLRs as those of human but substantially differed from mouse DC subsets. Macaque myeloid DCs (MDCs) expressed TLR3, 4, 7 and 8 whereas macaque plasmacytoid DCs (PDCs) expressed only TLR7 and 9. Additionally, TLR expression patterns in macaque monocyte-derived dendritic cells (mo-DCs) (i.e., TLR3, 4, 8 and 9), monocytes (i.e., TLR4, 7, and 8) and B cells (i.e., TLR4, 7, 8, and 9) were also similar to their human counterparts. However, the responsiveness of macaque APCs to certain TLR ligands partially differed from that of human in terms of phenotype differentiation and cytokine production. Strikingly, in contrast to human mo-DCs, no IL-12p70 production was observed when macaque mo-DCs were stimulated with TLR ligands. In addition, CD40 and CD86 phenotypic responses to TLR8 ligand (poly U) in mo-DCs of macaque were higher than that of human. Despite these functional differences, our results provide important information for a rational design of animal models in evaluating TLR ligands as adjuvant in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call