Abstract

Ruminococcal cellulase (Ruminococcus albus F-40 endoglucanase EgI) was successfully expressed in Butyrivibrio fibrisolvens OB156C, using the erm promoter from pAMbeta1. A newly identified signal peptide coding region of xynA from B. fibrisolvens 49 allowed efficient translocation of the foreign EgI into the extracellular fraction. First, B. fibrisolvens xynA with or without its own putative signal peptide (XynA SP) coding region was cloned into a shuttle vector to transform B. fibrisolvens OB156C. Both plasmids caused a 2- to 2.4-fold increase in xylanase activity. The transformant expressing XynA with the signal peptide showed a significantly higher proportion of activity in the extracellular fraction than the transformant with XynA lacking the signal peptide (75% vs. 19%), demonstrating the significance of XynA SP in the translocation of the expressed enzyme. Second, using the XynA SP coding region, secretion of EgI was attempted in B. fibrisolvens. Since the signal peptide of R. albus EgI did not function in B. fibrisolvens, it was replaced with the XynA SP. A high activity variant of EgI containing the XynA SP was transcribed using the erm promoter, resulting in a 27-fold increase in endoglucanase activity, most of which (>93%) was in the extracellular fraction of the B. fibrisolvens transformant. EgI without the XynA SP was scarcely detected in the extracellular fraction (<10%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.