Abstract

Cytochrome P450 aromatase (P450arom), which is encoded by cyp19a1a, can convert androgen to estrogen. Therefore, P450arom is important in gonadal differentiation and maintenance. In this study, we analyzed the expression and DNA methylation of cyp19a from Chinese sea perch Lateolabrax maculatus (sp. cyp19a1a). The sp. cyp19a1a gene consists of 9 exons, but only 3.5 kb, being smaller than the human cyp19a1a, as a result of small introns. The sp. cyp19a1a protein contains 518 amino acid residues and evolutionarily conserved domains and is clustered in the teleost subfamily on the phylogenetic tree. Amino acid alignment indicates that sp. cyp19a1a shares the highest identity (91.6%) to Epinephelus akaara and Lates calcarifer. Endogenous sp. cyp19a1a is detected mainly in stromal cells around the oocytes of stage I ovary, and the gene expression level has no difference after 40 days fresh water culture in both ovary and testis. The sp. Cyp19a1a can catalyze the production of estrogen from androgen in vitro. Seven CpG dinucleotides are found in the proximal promoter. Binding sites of the conserved predicted transcription factors include cAMP response element, steroidogenic factor-1, and SRY-Box. The deletion of this region reduces promoter activity significantly. The methylation level of the seven CpG dinucleotides in cyp19a1a promoter is higher in the testis (44.25 ± 4.04) than in the ovary (24.71 ± 3.05). The induced hypermethylation of the sp. cyp19a1a promoter suppressed promoter transcription function in vitro. These results suggest that DNA methylation may be a mechanism used for natural sex maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call