Abstract

We examined the expression and distribution of microtubule-associated protein 2 (MAP2) during the differentiation in culture of both mouse NB2a neuroblastoma and primary embryonic rat neurons. The differentiation of NB2a cells was induced with retinoic acid (RA) which stimulated the extension of a highly branched neuritic network and dibutyryl cAMP which stimulated the outgrowth of long bipolar or monopolar processes. We found that although monoclonal antibodies to MAP2 stained the cell bodies of control and differentiated cells, only the RA-induced neurites were positive for this antigen. These data support our ultrastructural studies indicating that the RA-induced neurites were dendrite-like and that the dibutyryl cAMP-induced processes were axon-like. Studies on the biosynthesis of MAP2 indicated that RA induced a 2–3-fold increase in MAP2 synthesis in 24 h; however, this effect was transient, with the synthesis of MAP2 in RA-treated cells returning to control level by 72 h. Although biosynthetic studies suggested the synthesis of species at 250–300 kdalton, the major molecular weight form in the neuroblastoma cells was 230 kdalton. Immunocytochemical analysis of primary neurons showed staining of neuronal cell bodies and of short processes, but virtually no staining of the long axon-like processes. The of neuronal cell bodies and processes was evident at all stages of cell differentiation. This finding was corroborated by immunoblots which showed significant amounts of MAP2 throughout cell development. The molecular weight of the immunoreactive material was ca. 300 kdalton in both primary neurons and rat brain. Immunoblots also revealed that embryonic neurons expressed only MAP2B as they differentiated in culture for 14 days. Biosynthesis studies suggested that early in culture there was a modest increase in MAP2 synthesis, but no detectable change was observed thereafter. We concluded therefore that both neuroblastoma cells and primary neurons can differentiate neuritic processes, which show dendritic properties in terms of morphology and preferential distribution of MAP2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call