Abstract

Background All excitable cells express voltage-gated potassium (KV) channels; in neurons they play an essential role in setting the resting membrane potential, controlling the firing frequency and duration of action potentials, and modulate neurotransmitter release. Due to this critical function as regulators of neuronal excitability, mutations and/or deletions in potassium channel subunit genes are associated with diverse clinical phenotypes (channelopathies), including seizure or movement disorders in both humans and animals. Additionally, voltage-gated potassium channels might play a crucial role in neurodegenerative and psychiatric disorders. For this reason, a better understanding of the occurrence and specific distribution of voltagegated potassium channels would be highly necessary. Several members of the KV1 subfamily have been found, but only KV1.1, KV1.2, KV1.4 and KV1.6 are widely expressed in the CNS in both human and rodent brain. However, unlike to rodents, little is known regarding the regional localization of these four members of the KV1 subfamily in human brain. Therefore we investigated, for the first time, the distribution of these four KV1 channel subtypes in human neocortex and hippocampus, which are known for their vulnerability to epilepsy and their importance for learning, memory and cognitive processes.

Highlights

  • All excitable cells express voltage-gated potassium (KV) channels; in neurons they play an essential role in setting the resting membrane potential, controlling the firing frequency and duration of action potentials, and modulate neurotransmitter release. Due to this critical function as regulators of neuronal excitability, mutations and/or deletions in potassium channel subunit genes are associated with diverse clinical phenotypes, including seizure or movement disorders in both humans and animals

  • Unlike to rodents, little is known regarding the regional localization of these four members of the KV1 subfamily in human brain

  • We investigated, for the first time, the distribution of these four KV1 channel subtypes in human neocortex and hippocampus, which are known for their vulnerability to epilepsy and their importance for learning, memory and cognitive processes

Read more

Summary

Open Access

Expression and differential distribution of the shaker-related voltage-gated potassium channel family (KV1.x) in human hippocampus and neocortex. Joint meeting with the Hungarian Society of Experimental and Clinical Pharmacology (MFT) Innsbruck, Austria. 29-30 September 2011

Background
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.