Abstract
Osteopontin (OPN) is a secreted, arginine-glycine-aspartic acid (RGD)-containing phosphoprotein proteolytically modified by members of the matrix metalloproteinase (MMP) family. We previously defined the MMP-3 and MMP-7 cleavage sites in OPN and found increased adhesive and migratory activity of a pool of MMP-cleaved fragments compared to full-length OPN. In the present study, we performed mutational analysis of recombinant full-length OPN and generated recombinant OPN fragments corresponding to the MMP-cleaved fragments, which have apparent molecular weights of 40, 32, and 25 kD by SDS-PAGE. Single residue mutations in 167L and 211L do not abrogate MMP cleavage although processing of the putative C-terminal fragment appears to be affected by a 167L to 167A mutation. The N-terminal 40-kD fragment was a stronger adhesive substrate compared to full-length OPN despite the observation that full-length OPN displayed greater binding in soluble phase to endothelial cell surfaces. While the 32-kD fragment showed significant binding to endothelial cell surfaces, the C-terminal 25-kD fragment did not interact with cell surface. Our data indicate that the increased adhesive activity of MMP-cleaved OPN was accountable by the N-terminal 40-kD fragment. We further analyzed receptor binding, using competition with peptides representing the alpha4beta1 and alpha9beta1 binding sites in the 40-kD N-terminal fragment. Using Jurkat cells, we found that a peptide corresponding to 131ELVTDFPTDLPATE144 had no effect on cell adhesion, whereas the peptide SVVYGLR competitively inhibited cell adhesion. These results suggest that a shorter motif that is found in MMP-cleaved OPN, 162SVVYG166, is sufficient to mediate cell adhesion of Jurkat cells to receptors, including the beta1 integrins, which have been previously characterized to bind the SVVYGLR sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.