Abstract

Lipid modification of proteins plays key roles in cellular signaling pathways. We describe the development of myristoylated preS1–nanocages (myr–preS1–nanocages) that specifically target human hepatocyte-like HepaRG cells in which a specific receptor-binding peptide (preS1) is joined to the surface of naturally occurring ferritin cages. Using a genetic engineering approach, the preS1 peptide was joined to the N-terminal regions of the ferritin cage via flexible linker moieties. Myristoylation of the preS1 peptide was achieved by co-expression with yeast N-myristoyltransferase-1 in the presence of myristic acid in Escherichia coli cells. The myristoylated preS1–nanocages exhibited significantly greater specificity for human hepatocyte-like HepaRG cells than the unmyristoylated preS1–nanocages. These results suggest that the lipid-modified nanocages have great potential for effective targeted delivery to specific cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.