Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a frequent and sometimes fatal inherited metabolic disorder of fatty acid beta-oxidation. A eukaryotic expression system was used to study naturally occurring mutations in MCAD. The 1263 nucleotide coding region of human MCAD cDNA was inserted downstream of the SV40 early promoter for high-level expression in Chinese hamster ovary cells. Both normal MCAD cDNA and a mutant MCAD cDNA containing the common, disease-causing A to G transition at position 985 (A985G), which alters a lysine to a glutamic acid (K304E), were inserted into expression vectors. Transient transfection of Chinese hamster ovary cells was performed with the expression constructs. The steady state level of expressed normal MCAD protein antigen was substantially higher (5-fold) than the expressed mutant protein. The MCAD enzymatic activity in protein extracts from cells containing the expressed normal MCAD cDNA was also much higher (6-fold) than the activity in cells expressing the mutant MCAD. Therefore, these data confirm that the common K304E mutation causes MCAD deficiency primarily by decreased protein stability rather than reduction of catalytic activity and, in fact, demonstrate that the K304E mutant protein has a similar sp act against octanoyl CoA substrate as the normal protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.