Abstract
Although the expression of estrogen and progesterone receptors within porcine ovary and cumulus-oocyte complexes (COCs) is well recognized, still little information is known regarding expression of the progesterone receptor (PGR), PGR membrane component 1 (PGRMC1) and of estrogen-related receptors (ERRγ and ERRβ/γ) in separated cumulus cells in relation to real-time proliferation. In this study, a model of oocytes-separated cumulus cells was used to analyze the cell proliferation index and the expression PGR, PGRMC1 and of ERRγ and ERRβ/γ during 96-h cultivation in vitro using real-time quantitative PCR (qRT-PCR) and confocal microscopic observation. We found that PGR protein expression was increased at 0 h, compared with PGR protein expression after 96 h of culture (P < 0.001). The expression of PGRMC1, ERRγ and ERRβ/γ was unchanged. After using qRT-PCR we did not found statistical differences in expression of PGR, PGRMC1, ERRγ and ERRβ/γ during 96 h of cumulus cells in vitro culture (IVC). We supposed that the differential expression of the PGR protein at 0 h and after 96 h is related to a time-dependent down-regulation, which may activate a negative feedback. The distribution of PGR, PGRMC1 proteins may be linked with the translocation of receptors to the cytoplasm after the membrane binding of respective agonists and intra-cytoplasmic signal transduction. Furthermore, cumulus cells analyzed at 0 h were characterized by decreased proliferation index, whereas those after 96 h of culture revealed a significant increase of proliferation index, which may be associated with differentiation/luteinization of these cells during real-time proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.