Abstract
Methionine (Met) residues in proteins/peptides are extremely susceptible to oxidation mediated by reactive oxygen species, resulting in the formation of methionine sulfoxide, which could be inversely reduced back to Met by methionine sulfoxide reductase (MSR). In the present study, an A-type MSR gene, termed NtMSRA4, was isolated from tobacco (Nicotiana tabacum). Sequence analysis of NtMSRA4 amino acid sequence indicated that the gene, encoded a polypeptide with a molecular weight of 21kDa, possessed the highly conserved motif, 'GCFWG' in the N-terminus and 'KGCNDPIRCY' motif in the C-terminus respectively. Substrate specific analysis revealed that recombinant NtMSRA4 protein could reduce specifically S-isomer of Dabsyl-MetSO to Dabsyl-Met in vitro using dithiothreitol as an electron donor. Enzymatic properties analysis showed that the temperature of 42°C and pH 9.0 were optimum for NtMSRA4 activity. The K m and K cat values of NtMSRA4 were determined to be 40.04μM and 0.048S(-1) in the thioredoxin dependent reduction system. Overexpression of NtMSRA4 in E. coli cells enhanced resistance to H2O2 toxicity. Subcellular localization result showed that NtMSRA4 was located in the chloroplast. The expression level of NtMSRA4 was affected differently after exposure to various abiotic stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.