Abstract

Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

Highlights

  • Sweet cherry (Prunus avium L.) is an important crop valued primarily for the fleshy fruits, an excellent source of many nutrients and phytochemicals

  • At the start of this research, sequence information on some cherry anthocyanin synthesis genes as well as raw genome sequence of closely related peach species was already available in public databases

  • The gene for UDP-glucose:flavonoid 3-Oglucosyltransferase (UFGT) enzyme appeared to be extremely conserved with no nucleotide differences across all coding sequence and the only short intron in our sweet and sour cherries and another publicly available sweet cherry gene sequence

Read more

Summary

Introduction

Sweet cherry (Prunus avium L.) is an important crop valued primarily for the fleshy fruits, an excellent source of many nutrients and phytochemicals. There are hundreds of sweet cherry varieties with fruit skin and flesh colors ranging from dark red to pale yellow, and this important quality is determined primarily by the accumulation of red anthocyanin pigments. Anthocyanins belong to flavonoids, an important group of plant secondary metabolites possessing antioxidant activity and other health-promoting qualities [1]. The general pathway of flavonoid synthesis is already well established in a model plant Arabidopsis thaliana [2] and has been studied in important fruit crops such as grapevine (Vitis vinifera) [3] and apple (Malus domestica) [4]. The flavonoid pathway branches from the general phenylpropanoid pathway when enzyme chalcone synthase (CHS) generates tetrahydroxychalcone from 4-coumaroyl-CoA and PLOS ONE | DOI:10.1371/journal.pone.0126991 May 15, 2015

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.