Abstract

Interleukin-8 (IL-8) is an angiogenic factor that promotes growth of pancreatic tumors. The purpose of this study was to determine if c-Src, a protein tyrosine kinase frequently overexpressed in pancreatic cancer, regulated IL-8 expression and to elucidate the Src-mediated signaling pathways that contribute to angiogenesis in pancreatic adenocarcinoma cells. In a panel of pancreatic cancer cell lines, expression of total and activated Src correlated with IL-8 production. Furthermore, ectopic expression of activated Src in PANC-1 cells with low endogenous Src activity significantly increased IL-8 production (P < 0.005). In contrast, pharmacologic inhibition of endogenous c-Src kinase activity or small interfering RNA-mediated "knockdown" of c-Src expression in L3.6pl cells with high Src expression and activity caused significant decreases in IL-8 production (P < 0.005). Inhibition of c-Src activity resulted in decreased phosphorylation of Akt, p38, and extracellular signal-regulated kinase (Erk)-1/2. Significant (P < 0.005) dose-dependent decreases were observed in IL-8 expression by inhibiting Src-dependent signaling molecules Erk-1/2 and p38 but not phosphatidylinositol 3-kinase. To assess the relevance of Src inhibition to angiogenesis, in vivo gelfoam assays were done. Robust infiltration of vessels was observed in gelfoam saturated with conditioned medium from pancreatic carcinoma cells. This angiogenesis was nearly abrogated in gelfoams saturated with conditioned medium from cells treated with the Src family kinase inhibitor, PP2 (P < 0.001). Thus, c-Src regulates critical "downstream" signaling pathways that contribute to expression of IL-8 in human pancreatic tumor cells, suggesting c-Src may be a target for therapeutic intervention in pancreatic adenocarcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call