Abstract

The inducible isoform of heme oxygenase (HO)-1 regulates the vascular smooth muscle tone and responds to hypoxia. To investigate the role of HO-1 in a low-flow priapism. Sixty male Sprague-Dawley rats were divided into five groups of six rats each. Each group of rats was sacrificed at 0 hour (group 1, control), 4 hours (group 2), 8 hours (group 3), 12 hours (group 4), and 24 hours (group 5) after inducing an artificial veno-occlusive priapism. The changes of the expression and activity of HO-1, and the expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS), and levels of cyclic guanosine monophosphate in the penis were examined in a low-flow priapism. In addition, the HO-1 expression level in the aortas from each group was simultaneously measured to determine whether the changes in HO-1 were systemic. The expression and activity of HO-1 was examined in artificially induced veno-occlusive priapism in rat penile tissues. The expression of the HO-1 protein and the HO-1 enzyme activities in the penile tissues were gradually increased as time increased from 0 to 24 hours (P < 0.01). HO-1 immunoreactivities were localized in the endothelial layer of the cavernosal sinusoids. The expression of iNOS were also increased at 12 and 24 hours. The cyclic guanosine monophosphate level was also significantly increased at 24 hours (P < 0.05). However, the expression of the eNOS protein showed no statistically significant change with time, and the expression of the HO-1 protein in the aorta also showed no significant change with time. A higher induction of HO-1 with time was observed in artificially induced veno-occlusive priapism, which might play a protective role against hypoxic injury. However, this may also play an important role in the vicious circle observed in a low-flow priapism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.