Abstract

Cisplatin (cis-dichlorodiammineplatinum II), a potent antitumour compound, stimulates immune responses by activating monocytes/macrophages and other cells of the immune system. However, the exact mechanism by which cisplatin activates these cells is poorly characterized and attempts are being made to understand this mechanism. Previous studies from this laboratory have shown that Lyn, a protein tyrosine kinase of the src family, and nuclear factor (NF)-kappaB are involved in cisplatin-induced macrophage activation. Recent studies suggest that the RAS and mitogen-activated protein (MAP) kinases function as a connecting link between activated lyn and NF-kB, which raises the possibility of their involvement in cisplatin-induced macrophage activation. Therefore, this study was undertaken to investigate the effect of cisplatin treatment on the expression/activation of RAS (a low molecular weight GTP-binding protein) and MAP kinases in murine peritoneal macrophages. The underlying mechanism of expression/activation of RAS and MAP kinases in cisplatin-treated macrophages was also investigated. Immunoblotting and immune-complex kinase assays revealed that cisplatin treatment of macrophages leads to increased expression/activation of RAS and MAP kinases, with optimal expression/activation at 15 min of treatment. Using a battery of specific inhibitor/modulators of different signalling molecules, this study shows that expression and activation of MAP kinases are two unrelated processes. It was also observed that kinase (protein tyrosine and protein kinase C) inhibitor and Ca2+/calmodulin antagonist inhibit expression/activation of RAS/MAP kinases in macrophages, whereas phosphatases (protein tyrosine and serine/threonine) inhibitor up-regulate these kinases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call