Abstract

Escherichia coli (E. coli) F17 is one of the main pathogens causing diarrhea in young livestock. The specific F17 fimbriae and lipopolysaccharide (LPS) in the surface components of E. coli F17 induces immune activation via interacting with the intestinal epithelial cells (IECs)-expressed innate immune toll-like receptors (TLRs) signaling pathway. In this study, the expression patterns of eight canonical genes from the TLR signaling pathway (IL-6, IL-8, IL-1β, TLR4, MyD88, CD14, TNF-α and TRAF6) were analyzed in LPS-induced IECs, E. coli F17-infected IECs and ileum tissue of E. coli F17-infected lambs. The results showed that increased expression levels of all the studied genes were observed following post-LPS-induced and E. coli F17-infected treatment, with TLR4 having the highest up-regulated expression multiple (compared to NC, fold change = 17.94 and 20.11, respectively), and CD14 having the lowest up-regulated expression multiple (fold change = 2.68 and 1.59, respectively), and higher expression levels of all the studied TLR signaling pathway genes were observed in ileum tissue of E. coli F17 antagonistic (AN) lambs than in E. coli F17 sensitive (SE) lambs. Furthermore, when compared to LPS-induced IECs, E. coli F17-infected IECs showed a more pronounced increase in the expression of IL6, TLR4 and TNF-α, indicating the different roles of these genes in the IECs resistance to E. coli F17 infection. Our results demonstrate that the TLR signaling pathway likely promotes immune activation and provide the first evidence that TLRs have a significant potential to protect against E. coli F17 infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call