Abstract

Simple SummaryThe Wuliang Mountain Black-bone chicken is a Chinese indigenous breed with good meat quality and strong resistance to disease. Like most of the other Chinese domestic breeds, it has a much slower early growth rate compared with foreign chicken breeds. Therefore, the genetic selection of body size and carcass traits is still the focus of Chinese indigenous chicken breeding. The paired-like homeodomain transcription factor 2 (PITX2) gene, an important transcription factor, plays an important role during the development of the eye, heart, skeletal muscle and other tissues in mammals. In chicken, the PITX2 gene affects the late myogenic differentiation of the limb. The objectives of this study were to detect the expression of the PITX2 gene and analyze the associations between the polymorphisms in the exons of the PITX2 gene and body size as well as carcass traits in chickens. The results could contribute to Chinese chicken breeding based on marker assisted-selection.PITX2 is expressed in and plays an important role in myocytes of mice, and it has effects on late myogenic differentiation in chickens. However, the expression profile and polymorphisms of PITX2 remain unclear in chickens. Therefore, the aim of the present study was to detect its expression and investigate single nucleotide polymorphisms (SNPs) within its exons and then to evaluate whether these polymorphisms affect body size as well as carcass traits in chickens. The expression analysis showed that the expression level of chicken PITX2 mRNA in the leg muscle and hypophysis was significantly higher (p < 0.01) than those in other tissues. The results of polymorphisms analysis identified two SNPs (i.e., g.9830C > T and g.10073C > T) in exon 1 and 10 SNPs (i.e., g.12713C > T, g.12755C > T, g.12938G > A, g. 3164C > T, g.13019G > A, g.13079G > A, g.13285G > A, g.13335G > A, g.13726A > G and g.13856C > T) in exon 3, including four novel SNPs (i.e., g.9830C > T, g.12713C > T, g.12938G > A and g.13856C > T). In the loci of g.10073C > T and g.12713C > T, chickens with the CT genotype had the highest (p < 0.05 or p < 0.01) breast depth and breast angle, respectively. For the locus of g.13335G > A, chickens with the GG genotype had the highest (p < 0.05 or p < 0.01) breast angle and shank circumference. For the locus of g.13726A > G, chickens with the GG genotype had the highest breast width, fossil keel bone length and shank circumference. The locus of g.12713A > G had significant effects on the PITX2 mRNA expression level in leg muscle. The H1H7 diplotype showed the highest shank circumference, and the H2H8 diplotype showed the highest breast muscle rate. The present research suggested that polymorphisms of the exons of the PITX2 gene were significantly associated with the body size and carcass traits of Wuliang Mountain Black-bone chickens and the PITX2 gene could be a potential candidate gene for molecular marker-aided selection in Wuliang Mountain Black-bone chickens and other chicken breeds.

Highlights

  • Wuliang Mountain Black-bone (WLMB) chicken is a Chinese indigenous breed with good meat quality, strong resistance to disease and medicinal and health-promoting values [1]

  • Allspecies of the

  • Discussion acid sequences of 12 species were aligned, the result showed that the PITX2 amino acid sequences were Based relatively conserved and the detected in the present study at conserved regions, on the construction of aSNPs neighbor-joining phylogenetic tree occurred in which the

Read more

Summary

Introduction

Wuliang Mountain Black-bone (WLMB) chicken is a Chinese indigenous breed with good meat quality, strong resistance to disease and medicinal and health-promoting values [1]. The selection of body size and carcass traits is still the focus of Chinese indigenous chicken breeding. The identification of DNA molecular markers related to quantitative traits based on candidate genes has become an important means of marker-assisted breeding to improve body size and carcass traits [5]. Paired-like homeodomain transcription factor 2 (PITX2) is a member of the bicoid-like homeobox transcription factor family [6], which has a homeobox-2 domain and an OAR domain (15-aa) [7]. The homeobox-2 domain can combine with DNA through its helix-turn-helix (HTH) structure, and the OAR domain is where PITX2 interacts with pituitary homeobox 1

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call