Abstract

Transcription factors (TFs) have a central role to play in regulating gene expression. To analyze the co-expression patterns of selected TFs with the motor protein prestin of the outer hair cells, we applied an real-time PCR approach combining several kinds of information: (i) expression changes during postnatal development, (ii) expression changes by exposure of organotypic cultures of the organ of Corti to factors which significantly affect prestin expression [thyroid hormone (T4), retinoic acid (RA), butyric acid (BA), increased KCl concentration] and (iii) changes along the apical-basal gradient. We found that the mRNA levels of the TF Brn-3c (Pou4f3), a member of the POU family, are significantly associated with the regulation of prestin during postnatal development and in cultures supplemented with T4 (0.5 μM), BA (0.5-2.0 mM), and high KCl (50 mM) concentration. The mRNA level of the constitutively active TF C/ebpb (CCAAT/enhancer binding protein beta) correlates positively with the prestin expression during postnatal development and in cultures exposed to T4 and RA (50-100 μM). The mRNA levels of the calcium-dependent TF CaRF correlates significantly with the prestin expression in cultures exposed to T4 and high KCl concentration. The observed coexpression patterns may suggest that the TFs Brn-3c, C/ebpb, and Carf contribute to regulating the expression of prestin under the investigated conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call