Abstract
Osteopontin splicing isoforms (OPN-SI) present differential expression patterns and specific tumor roles. Our aims were to characterize OPN-SI expression in prostate cancer (PCa) and benign prostate hyperplasia (BPH) tissues, besides evaluating their potential as biomarkers for PCa diagnosis and prognostic implications. Prostatic tissue specimens were obtained from 40 PCa and 30 benign prostate hyperplasia (BPH) patients. Quantitative real time PCR (qRT-PCR) was used to measure OPN-SI mRNA expression. Immunohistochemical analysis was performed using an anti-OPNc polyclonal antibody. Biostatistical analyses evaluated the association of OPN-SI and total Prostate Specific Antigen (PSA) serum levels with clinical and pathological data. PCa tissue samples presented significantly higher levels of OPNa, OPNb and OPNc transcripts (p<0.01) than in BPH specimens. OPN-SI mRNA expression were positively correlated with Gleason Score (p<0.01). ROC curves and logistic regression analyses demonstrated that OPN-SI and PSA were able to distinguish PCa from BPH patients (p<0.01). The OPNc isoform was the most upregulated variant and the best marker to distinguish patients' groups, presenting sensitivity and specificity of 90% and 100%, respectively. Immunohistochemistry analysis also demonstrated OPNc upregulation in PCa samples as compared to BPH tissues. OPNcprotein was also strongly stained PCa tissues presenting High Gleason Score. Multivariate analysis indicated that OPNc expression levels above the cut-off value presented a chance 4-fold higher for PCa occurrence. We conclude that OPN-SI were overexpressed in PCa tissues, strongly associated with PCa occurrence and with tumor cell differentiation. Our results suggest OPNc splicing isoform as an important biomarker contributing to improve PCa diagnosis and prognosis, besides providing insights into early steps of PCa carcinogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.