Abstract
Diapause is an adaptive response to adverse environmental conditions, but the molecular mechanisms are unclear. Some signaling molecules have been identified in the regulation of diapause. GSK-3β is an important signaling protein involved in several signaling pathways. In this study, GSK-3β from the cotton bollworm, Helicoverpa armigera, was cloned using reverse transcription polymerase chain reaction and rapid amplification of complementary DNA (cDNA) ends techniques. Sequence analysis showed that the full-length cDNA was 1447bp containing a 292bp 5'-untranslated region (UTR), a 162bp 3'-UTR and a 993bp open reading frame (ORF). The deduced Har-GSK-3β protein has high identity to other known GSK-3β, as determined by Basic Local Alignment Search Tool analysis. Developmental expression of total GSK-3β and p-GSK-3β (Ser9) in diapause and non-diapause pupal brains was investigated by Western blotting. Results indicated that the activity of GSK-3β is down-regulated in diapause pupal brains, which is further confirmed by Western blotting after diapause break. These finding suggest that the down-regulation of Har-GSK-3β activity may be important for pupal diapause.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.