Abstract

Gene duplication in plants occurs via several different mechanisms, including whole genome duplication, and the copied genes acquire various forms and types. The cellulose synthase (CesA) family functions in cellulose synthesis complex (CSC) formation, which is involved in the synthesis of primary and secondary cell walls in plants. In the genome of Populus, 17 CesA have been annotated, and some of them appeared through whole genome duplication. The nucleotide sequence of the duplicated genes changed during subsequent evolution, and functional differentiation of genes might have occurred. To gain insight into the evolutionary fate of the duplicated CesA, expression analysis with quantitative reverse transcription polymerase chain reactions and promoter-reporter assays was performed on three duplicated gene pairs whose products have been reported to form a single CSC. Changes in expression of each gene at different developmental stages were detected and divergent expression patterns in different organs and tissues observed between the gene pairs. Among the tested genes, expression of PttCesA3-C was apparently lower than that of its counterpart, PttCesA3-D. The results suggest that the six CesA are approaching sub-functionalisation or non-functionalisation. Furthermore, the level of functionalisation may vary among the three pairs of genes, and functional specialisation of each CesA should have been achieved, at least partially, through differences in expression of genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call